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Chapter 1

Introduction

The relatively new field of quantum computing has seen rapid growth in the past two decades.

Quantum computing spans the theoretical and applied sides of both computer science and

quantum physics. From its beginnings as a thought experiment, its growth into formal

system, and finally its detailed analysis and construction, the development of quantum com-

puting has paralleled the early development of classical computing.

In Section 1.1 we briefly examine some of the reasons for interest in quantum computing.

We then turn our attention to early results and prominent quantum algorithms in Section

1.2. We review the theory and notation of quantum computing in Section 1.3. Following

that we underline the importance of lower bounds in Section 1.4, and summarize our results

in Section 1.5.

1.1 Motivation

Possible Violation of the Polynomial Church-Turing Thesis

One of the fundamental axioms of computer science is the Church-Turing thesis, which

states that any function computable by a “realistic” computer can be computed by a Turing

machine. An extension of the Church-Turing thesis, the Polynomial Church-Turing thesis
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states:

. . . any reasonable attempt to model mathematically computer algorithms and

their time performance is bound to end up with a model of computation and

associated time cost that is equivalent to Turing machines within a polynomial

[15].

This says essentially that all physically realizable computing devices are, within a polynomial

factor, equivalent to one another in their time complexity.

In the early 1980’s physicist Richard Feynman observed that no classical computer can

simulate a quantum mechanical system of particles without incurring exponential slowdown

[18]. He also suggested that a computer that behaves in a quantum-mechanical way could

potentially simulate such systems without exponential slowdown [18]. The possibility that

a quantum computer could violate the polynomial Church-Turning thesis made the study

of quantum computation appealing, and provided a strong incentive for studying quantum

time complexity. Many of the earliest problems and algorithms for quantum computers were

explicitly designed to show tasks that a quantum computer performs exponentially faster

than a classical Turing machine.

Hardware Trends Toward Quantum Sizes

Another strong incentive to study quantum computing is the miniaturization of classical

computing components. The size of transistors and memory elements has shrunk at an

exponential rate. At the current rate, sometime around 2020 the number of atoms used to

represent a bit will be 1 [18]. At this scale, quantum mechanics will dominate the behavior

of the memory element. Whether or not quantum computing will provide a launch pad for

a new generation of computing devices is irrelevant to the practical need to understand and

manipulate systems so small that their behavior is dictated by quantum physics.
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1.2 Early Results

Deutsch’s Universal Quantum Computer: In 1985 David Deutsch published his semi-

nal paper Quantum theory, the Church-Turing principle and the universal quantum computer

[6]. In this paper Deutsch defined a quantum generalization of the classical Turing machine,

showed that all Turing computable functions are also computable by his universal quantum

computer, and exhibited a task that his universal quantum computer is more efficient for

than any classical restriction of it [6].

Following this paper, researchers identified several toy problems that a quantum com-

puter is exponentially faster for than a classical Turing machine [5] [3]. Unfortunately, these

were all contrived problems with no practical application. While the potential for exponen-

tial speedup fostered great curiosity, the study of quantum computing remained primarily

academic.

Prominent Quantum Algorithms

Shor’s Algorithm: The status of quantum computing as a matter of academic curios-

ity changed rapidly in 1994 when Peter Shor published his paper Algorithms for Quantum

Computation: Discrete Logarithms and Factoring. The primary result of the paper was a

polynomial time quantum algorithm for factoring large integers [17]. It is not known if there

is a classical algorithm for factoring large integers efficiently, but the best algorithms pub-

lished thus far are exponential [18]. The presumed difficulty of factoring large integers is

the basis for most modern cryptography. The importance of cryptography and its poten-

tial frailty in the face of Shor’s algorithm argue for earnestly researching the practicality of

constructing a quantum computer; this endeavor is currently ongoing in multiple corporate,

government, and academic research facilities [12] [8].
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Grover’s Algorithm: In 1996 L. K. Grover published his paper A Fast Quantum Me-

chanical Algorithm for Database Search providing a O(
√
N) time algorithm for finding a

single marked element in an unsorted database of N elements [10]; the best possible classical

algorithm requires Ω(N) time. This unordered search problem was not the first problem

for which a quantum algorithm was shown to be asymptotically faster than any classical

algorithm, but it was the first such problem of real utility. Grover’s algorithm is optimal

to within a constant factor, so the potential speedup of any quantum algorithm for the un-

ordered search problem is moderate: a quadratic factor. While Shor’s algorithm may be of

more immediate utility, Grover’s algorithm seems more interesting in a theoretical sense, as

it highlights an area of fundamental superiority in quantum computation.

1.3 Quantum Computing

The study of quantum computing is frequently opaqued by the demands that it places on

the investigator’s sophistication in quantum mechanics. We try in this section to present

the basics of quantum computation and some common notation without delving deeply into

quantum physics. For more detailed information the author suggests Quantum Computation

by André Berthiaume [4].

Bits and Qubits

The most fundamental building block of the classical computer is the bit. A bit is a variable

with only two possible values: 0 or 1. The smallest conceivable storage for a bit involves a

single elementary particle of some sort. Consider a particle with a spin-1/2 characteristic

that when measured is either +1/2 or −1/2. We could encode 1 to be +1/2 and 0 to be

−1/2, and if we could measure and manipulate the spin of such a particle, then we could

theoretically use this particle to store one bit of information. The spin-1/2 particle, or any
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two state system that behaves in a quantum manner, could instead be the fundamental

building block of a quantum computer. We will call a two state quantum system a qubit,

to denote that it is analogous to a classical bit. When a classical bit is measured, the value

observed will always be the value stored. Quantum physics states that when we measure a

qubit we will find it in one of two states, which we can label 0 and 1. The differences between

the qubit and the bit arise from the possible state of a qubit between measurements.

State Vectors and Dirac Notation

To quantify the state of our qubit when it is not being measured, we introduce the concept

of the state vector, which will completely describe the state of our qubit, and later the state

of a quantum register which we construct from multiple qubits.

State Vectors: We can describe the state of any quantum system by a state vector in

a Hilbert space. A Hilbert space is a complex linear vector space (CN [18]. In the Hilbert

space for a state vector describing an N -state quantum system there will be N perpendicular

axes, which correspond to the measurable states of the system. These are called basis states

or eigenstates. In general, the total state of a quantum system can be any complex linear

combination of the basis states. The Hilbert space for a single qubit has two perpendicular

axes, one corresponding to the 0 state, and the other corresponding to the 1 state.

Dirac Notation: The standard notation for a state vector is a ket vector |Ψ〉. For example,

a vector in IR3 with basis î, ĵ, k̂ is typically written as

~v = âi+ bĵ + ck̂ = (a, b, c)T .
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In Dirac notation, it would be written as

|v〉 = a|i〉+ b|j〉+ c|k〉 = (a, b, c)T .

The term ket and this notation come from the physicist Paul Dirac who wanted a concise

way of writing formulas involving row and column vectors. He referred to row vectors as bra

vectors represented as 〈y|. The inner product of a bra and a ket vector is written 〈y|x〉, and

is called a bracket [18].

Superposition

The projection of the state vector onto one of the axes of its Hilbert space shows the contri-

bution of that axis’s eigenstate to the whole state. A classical bit’s state vector can only lie

along one of the two axes. The state of a qubit can be any vector |X〉 in the Hilbert space

with 〈X|X〉 = 1; such a state vector is called normalized. The inner product of a vector

|X〉 = (x0, x1, . . . , xN−1)
T with itself is |x0|2 + |x1|2 + . . .+ |xN−1|2, where |a+ ib|2 = a2 + b2.

More generally 〈X|Y 〉 =∑N−1
i=0 x∗

i yi, where (a+ ib)∗ is a− ib.

Let x1 be the eigenstate corresponding to the 1 state, and let x0 be the eigenstate cor-

responding to the 0 state. We can write any state |X〉 as w0|x0〉+ w1|x1〉, where w0, w1 are

the complex projections of |X〉 onto the eigenstates such that |w0|2 + |w1|2 = 1. When the

qubit with state vector X is measured, we are guaranteed to find it to be in either the state

1|x0〉+ 0|x1〉 = |x0〉 or the state 0|x0〉+ 1|x1〉 = |x1〉.

More generally, the Hilbert space of an N -state quantum system is (CN . As with the

two state system, when we measure our N -state quantum system we will always find it to

be in exactly one of the eigenstates. The system is allowed to exist in any complex linear

superposition of the N states between measurements. An N -state quantum system with
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eigenstates x0, x1, . . . , xN−1 can be fully described by the vector

|X〉 =
N−1
∑

k=0

wk|xk〉, where
N−1
∑

k=0

|wk|2 = 1.

Our state vector can exist in a linear superposition of eigenstates, but we can only measure

the state vector to be in one of the eigenstates. When the state vector is observed, it makes

a sudden discontinuous jump to one of the eigenstates. When measurement is performed the

state vector is said to collapse [18]. For an N -state quantum system with a normalized state

vector, the probability that the state vector will collapse into the jth eigenstate is simply

|wj|2. The coefficient wj is called the amplitude of eigenstate |xj〉.

We can construct a quantum memory register out of the qubits described in the previous

section. Just as in a classical computer, a quantum computer will perform calculations

by manipulating its memory register from some start state to some final state. Note that a

quantum register composed of N qubits requires 2N complex numbers to completely describe

its state vector, as an N -qubit register has 2N basis states.

Unitary Operators

Not all functions on a quantum memory register preserve the superposition of the state

vector. For example, measurement destroys the superposition in the register. Operations

that collapse the state vector are calledmeasurements, and any complex linear transformation

of the state vector is called an operator. We can represent any operator on an N -bit quantum
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memory register in (C2N as a matrix

T =



















T00 T01 . . . T0(2N−1)

T10 T11 . . . T2(2N−1)

...
...

...

T(2N−1)0 T(2N−1)1 . . . T(2N−1)(2N−1)



















[9].

Quantum mechanics imposes conditions on which linear transformations are legal oper-

ators. In particular, the operation must be reversible, and it must preserve the length of

the state vector [9]. If we impose the condition that the sum of the kinetic and potential

energy (called the Hamiltonian) of our quantum memory register is constant, then all legal

operators have unitary matrix representations. A matrix T is unitary if the transpose of its

complex conjugate is T−1 [9]. Systems with time-dependent Hamiltonians are not required

to perform either Grover’s or Shor’s algorithm, and are not within the scope of this thesis.

Quantum Algorithms

An operator taking a register in a superposition of states as an input performs a “computa-

tion” on each of the components of the superposition simultaneously. Since the number of

possible superposed states is 2N for an N -qubit register, in some sense a quantum computer

can perform in one operation what would take an exponential number of operations on a

classical computer. Unfortunately, the more superposed states, the smaller the probability

that we will measure the value of our function for any particular one. Some clever algorithms,

most notably by Peter Shor and L. K. Grover, succeed by considering a function for which

some property of all the inputs is useful.

A quantum memory register is just a state machine whose state transitions are defined
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by the operators we apply. A reversible deterministic state machine with 2N states can be

modeled by an N -bit register and operators which are 2N × 2N permutation matrices. A

classical probabilistic state machine can be modeled in a similar manner, as an N -bit register

with a normalized state vector in IR2N and operators that are doubly stochastic matrices.

The difference between the quantum computer and the probabilistic computer is that the

projection of the quantum state vector onto any eigenstate is a complex number: it has

both a magnitude and a phase. The classical probabilistic state vector’s projection onto its

eigenstates has only a positive real magnitude. The amplitude of the quantum state vector

allows for operators which cause wave-like interference of the eigenstates, enforcing correct

solutions and diminishing incorrect ones [11].

A quantum algorithm is described by an initial normalized state and a sequence of unitary

matrices representing linear transformations of the state vector. These unitary matrices

should increase the probability that the state vector collapses into a correct solution state

when measured.

1.3.1 Error Models

Quantum computation is probabilistic in nature. We must therefore consider what (if any)

error we will accept from our quantum algorithms. Different settings allow different expected

running times, just as in the classical case, where different running times can be found for

different types of randomized algorithms.

Three primary settings for quantum algorithms are defined by Beals et al. [2]:

1. The Exact Setting: The quantum algorithm is required to return f(x) with certainty

for every x ∈ {0, 1}N .

2. The Zero Error Setting: The quantum algorithm may be inconclusive with proba-

bility at most 1/2, but if it returns an answer, it must be correct.
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3. The Bounded Error Setting: The quantum algorithm is required to return f(x)

with probability at least 2/3 for every x ∈ {0, 1}N .

Clearly any algorithm in the exact setting is also correct in the bounded error setting.

Algorithms in the zero error setting can be placed in the bounded error setting by performing

multiple runs that return an arbitrary value whenever they would return “inconclusive.”

Thus the bounded error setting is the broadest category, and as such offers the best potential

speedups. All the results in this thesis refer to computations in the bounded error setting.

1.4 Lower Bounds

Given that we can theoretically attain exponential speedup through quantum parallelism,

it is tempting to hope that quantum computing could offer exponential speedup to large

classes of problems. Shor’s algorithm seems to validate that hope. The optimality of Grover’s

algorithm, on the other hand, essentially establishes that a quantum computer can offer at

most quadratic speedup to the brute force solution of a problem that exhaustively searches

all possible solutions.

To answer questions surrounding the power of the quantum computer, we study lower

bounds for quantum algorithms. Lower bounds on large classes of functions allow us to make

quantitative comparisons between quantum and classical computers. It is very difficult to

prove a lower bound on a particular problem in any general model of computation, as one

has to argue how quickly any possible algorithm can solve the problem. Throughout this

thesis we will consider a restricted model of computation, the oracle query model, in which

we consider only algorithms whose input is provided in a black box.

We will present a theorem by Andris Ambainis that enables us to easily prove lower

bounds in the oracle query model [1]. The main strength of Ambainis’ Theorem is its ability

to prove lower bounds for a variety of Boolean functions, and thus allow us to compare the
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relative power of classical and quantum computers.

1.5 Summary

In Chapter 2, we define the quantum oracle model, and present Ambainis’ Theorem for prov-

ing lower bounds within this framework. We examine a shortcoming of Ambainis’ Theorem,

and then derive two theorems and use them to prove lower query bounds for symmetric

functions.

In Chapter 3, we apply the results of Chapter 2 to the interesting and well studied case

of non-trivial monotone graph properties. Finding the results wanting we appeal directly to

Ambainis’ Theorem to establish new lower bounds for graph connectivity and bipartiteness.

Finally we show there is no quantum extension of the Aanderaa-Karp-Rosenberg conjecture

in the bounded error setting.

In Chapter 4, we examine classes of functions that do not have the inherent symmetries

of those in chapters 2 and 3. We provide lower query bounds for tree functions, nondeter-

ministically evasive functions, and sensitive functions.

We conclude in Chapter 5 with a brief examination of some open questions for lower

oracle query bounds in the bounded error setting, and quantum computing in general.

Many of the results in this thesis have been attained previously by other authors. We

present these results again to illustrate how Ambainis’ Theorem can provide relatively simpler

proofs for a variety of problems. Table 1.1 summarizes our results and credits previous papers

where appropriate. All results are in the quantum bounded error setting.
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Function Lower Query Bound Section Reference

Generalized XOR Ω
(√

N
)

2.2.1

Determining the Oracle String N/2 2.3

Singleton functions Ω
(√

N
)

2.4

Partially symmetric Ω
(√

(N−a)b
(b−a)2

)

2.5

AND Ω
(√

N
)

2.6 Beals et al. [2]

OR Ω
(√

N
)

2.6 Beals et al. [2]

MAJORITY Ω (N) 2.6 Beals et al. [2]
PARITY Ω (N) 2.6 Beals et al. [2]

Nonconstant symmetric Ω
(√

N
)

2.7 Beals et al. [2]

Graph connectivity Ω (V ) 3.2.1
Graph bipartiteness Ω (V ) 3.2.2

Tree functions Ω
(

4
√
N
)

4.1 Beals et al. [2]

Nondeterministically evasive Ω
(√

N
)

4.3

Sensitive functions Ω
(

4
√

D(f)
)

4.4

Table 1.1. Summary of Results
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Chapter 2

Lower Oracle Query Bounds

In this chapter we present the quantum oracle framework. We first define the quantum

oracle model and oracle query complexity, then present a general theorem due to Ambainis

[1]. In Section 2.2 we derive a key lemma used throughout the thesis and apply it to a simple

problem. We then show that for the problem of determining the oracle string, Ambainis’

Theorem can not attain an asymptotically tight lower query bound in Sections 2.3 and 2.4.

Our primary purpose is to demonstrate the power and flexibility of Ambainis’ Theorem in

attaining lower bounds on broad classes of Boolean functions and simplifying previous proofs.

We investigate Boolean functions with partial symmetry in Section 2.5. We apply the result

of that section to attain asymptotically tight lower oracle query bounds of Ω(
√
N), Ω(

√
N),

Ω(N), and Ω(N) for the functions AND, OR, MAJORITY, and PARITY respectively in

Section 2.6. Finally we prove Ω(
√
N) oracle queries are required to compute any N -bit

nonconstant symmetric Boolean function in Section 2.7.
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2.1 Preliminaries

Useful Definitions

We will prove lower bounds for functions from {0, 1}N to {0, 1}, we will call such functions

N -bit Boolean functions, or just Boolean functions. In our proofs we will frequently need

the notion of the Hamming weight of a bit string: this is the number of 1’s in the string.

We denote the Hamming weight of a bit string x as |x|. We also will frequently refer to all

inputs which differ from a particular input in only one bit, we will call inputs which differ

in a single bit Hamming neighbors.

Quantum Oracle Models

In the quantum oracle model, we have an oracle that holds an N -bit input string. Our task

is to determine the value of some fixed Boolean function of the oracle string, using as few

oracle queries as possible. An oracle query is a question of the form: “What is the ith bit of

the oracle string?” The quantum oracle model is a special case of Ambainis’ more general

quantum adversary model [1], which we describe below.

In the quantum adversary model, we run an algorithm against an oracle that contains a

superposition of inputs. Let S be a subset of the possible inputs {0, 1}N . Algorithms in the

quantum adversary model will work in the Hilbert space H = HA ⊗ HI , where HA = (C2m

is the Hilbert space of our m-qubit memory register, and HI = (C|S| is the Hilbert space

spanned by basis vectors |x〉 corresponding to the elements of S. We think of HA as our

algorithm space, and HI as our input space. The tensor product of two vector spaces A and

B, denoted A⊗B, is a new vector space spanned by all possible pairs (i, j) of basis vectors

i from the first space and j from the second space. Thus H = (C|S|2m .

We can represent the basis states of our algorithm space as |i, b, z〉, where i consists

of ⌈logN⌉ bits, b is a single bit, z denotes all other bits our quantum algorithm requires.
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We define the oracle transformation O as the unitary operator that takes any eigenstate

|i, b, z〉⊗|x〉 to |i, b⊕xi, z〉⊗|x〉. The first ⌈logN⌉ bits of the subspace defined by a particular

input |x〉 is the index i to the oracle bit xi that we are querying. O is a permutation matrix.

A quantum algorithm that performs T queries is just a sequence of unitary transforma-

tions

U0 → O → U1 → O . . . → UT−1 → O → UT ,

where Ui is an arbitrary unitary transformation that does not depend on the oracle, and O is

the oracle transformation. (Recall that unitary transformations are reversible and preserve

the normalization of the state vector.)

The standard oracle query model is just an instance of the quantum adversary model

where the input space is spanned by a single eigenstate |x〉. In this case a quantum algorithm

starts with the state |0〉⊗|x〉, applies U0, O, U1, . . . , O, UT , and then measures the final state.

The rightmost bit of the measured state of the algorithm space is the output of the algorithm

on x. The algorithm computes f in the bounded error setting if for every input x ∈ {0, 1}N ,

the output is f(x) with some constant probability.

The measure of complexity in both the quantum oracle model and quantum adversary

model is the number of oracle queries. It should be noted that querying the oracle is not

always the most time consuming portion of an algorithm. For example, to factor an N bit

integer that the oracle holds, we can determine the integer in N queries. However, we must

then do 2N
Ω(1)

additional steps in the classical case, or N2 logO(1) N additional steps in the

quantum case to factor the number using the best known algorithms [2]. Nonetheless we

restrict our attention to the number of oracle queries required, as it is clearly a lower bound

on the overall running time of the algorithm. Classical bounds for query complexity are

well studied, making comparisons between quantum and classical oracle query complexity

possible.
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A Lower Query Bound Proving Framework due to Ambainis

Ambainis [1] proved the following fundamental result:

Theorem 2.1.1 (Ambainis). Let f be an N -bit Boolean function and let X and Y be two

sets of inputs such that f(x) 6= f(y) whenever x ∈ X and y ∈ Y . Let P ⊆ X × Y be a

relation between X and Y with the following properties:

1. Every element of X is related to at least m elements of Y by P .

2. Every element of Y is related to at least m′ elements of X by P .

3. For all i, every element x ∈ X is related to at most l elements y ∈ Y such that xi 6= yi

4. For all i, every element y ∈ Y is related to at most l′ elements x ∈ X such that xi 6= yi

Then

Ω

(

√

mm′

ll′

)

oracle queries are required by any quantum algorithm to compute f in the bounded error

setting.

This theorem will be the primary means of proving lower bounds in this thesis. Its appeal

is twofold; first, it leads to reasonably simple proofs, and second, it unifies many existing

lower bounds into a single framework.

The Quantum Adversary: Lower bounds for both classical and quantum algorithms

have been attained in the past by analyzing the behavior of the algorithm in the face of an

adversary. Ambainis uses a quantum adversary as the basis for his lower bound theorem;

instead of running a quantum algorithm against one input, it is run against a superposition

of inputs. The formulation of the quantum adversary and the justification for why a lower
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bound in the quantum adversary model is also a lower bound in the standard oracle query

model below are adapted and somewhat simplified from Ambainis’ paper [1].

Ambainis observed that any standard oracle query algorithm A that operates only on

a single input is also correct in the quantum adversary model. Consider a standard oracle

query algorithm A that uses T queries and succeeds with probability p. We assume our

quantum memory register begins in the |0〉 state. For every input x ∈ {0, 1}N , the algorithm

transforms the initial state |0〉 ⊗ |x〉 into the final state

(

αx |f(x)〉+ βx|f(x)〉
)

⊗ |wx〉 ⊗ |x〉

where |αx|2 + |βx|2 = 1, and |αx|2 ≥ p (so |βx|2 ≤ 1 − p, and finally |wx〉 is the remaining

state of the memory. The same algorithm will take any superposed input state

|0〉 ⊗
∑

x∈S

1
√

|S|
|x〉

to the final state

1
√

|S|
∑

x∈S

(

αx |f(x)〉+ βx|f(x)〉
)

⊗ |wx〉 ⊗ |x〉 .

Note that in this end state, if the oracle is measured to be x, a measurement of the memory

register will yield f(x) with probability |αx|2 ≥ p. Ambainis places a lower bound on the

number of oracle queries required by any quantum adversary algorithm to produce such an

end state from such a start state.

This argument gives us a lower bound in the standard oracle query model as well. If

T queries are required of a quantum adversary algorithm to establish a correct end state

with probability p, then no standard oracle query algorithm A can compute f with bounded

probability p in t < T queries.

This quantum adversary method provides a framework for proving a great diversity of
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lower bounds. Indeed, nearly every lower bound in this thesis is proved directly or indirectly

using Theorem 2.1.1. As useful as the theorem is, it does have limitations, one of which is

discussed in Section 2.4.

2.2 A Lemma for Proving Lower Query Bounds

The sensitivity of an input x of a function f is the number of Hamming neighbors y of x such

that f(x) 6= f(y). We will use the following lemma to establish lower bounds for functions

based solely on their sensitivity for a particular input.

Lemma 2.2.1. Let f be an N -bit Boolean function. If some input x has k Hamming

neighbors y such that f(x) 6= f(y), then Ω(
√
k) oracle queries are required to compute f in

the bounded error setting.

Proof: To prove Lemma 2.2.1 we will apply Theorem 2.1.1. Let X contain the single input

x from the statement of the lemma. Let Y contain the k Hamming neighbors of x such that

f(x) 6= f(y) when y ∈ Y . Let P be the complete relation from X to Y .

Then m = k, since xPy for each of the k elements y ∈ Y . Since no two Hamming

neighbors of x differ from x in the same bit position, we have l = 1. Since there is only

one element x in X and xPy for each y ∈ Y , we have m′ = l′ = 1. The result now follows

immediately from Theorem 2.1.1. �

This lemma will not in general provide us with the best lower bound that can be attained

from Ambainis’ Theorem 2.1.1: we are maximizingm/l, but we make no attempt to maximize

m′/l′. The strongest results of Ambainis’ Theorem frequently arise from maximizing both.

We will maximize both when dealing with partially symmetric functions in Theorem 2.5.1

and graph connectivity in Theorem 3.2.1. The singleton class of functions described in

Sections 2.3 and 2.4 is a class for which Lemma 2.2.1 obtains optimal results.
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2.2.1 Application to Generalized XOR

To see how simple proofs can be with Lemma 2.2.1 we provide an example. Generalized

XOR is the N -bit Boolean function that is 0 if and only if its input bits are all the same.

Theorem 2.2.1. Ω(
√
N) oracle queries are required to compute the generalized XOR of N

bits in the bounded error setting.

Proof: The generalized XOR of 0N is 0, and the generalized XOR of the N Hamming

neighbors of 0N is 1. The theorem follows from Lemma 2.2.1 with k = N . �

This lower bound is asymptotically tight: Beals et al. provide O(
√
N) oracle query al-

gorithms for computing the AND or OR of N bits in the bounded error setting [2], and the

generalized XOR of N bits is just AND ∨OR. Unfortunately, Ambainis’ Theorem does not

always perform this well, as we demonstrate in the next two sections.

2.3 Determining the Oracle String

Consider the problem of determining the oracle string. We prove two lower bounds for this

problem, one through Lemma 2.2.1, and another by using a known lower bound for PARITY.

Theorem 2.3.1. Ω(
√
N) oracle queries are required to determine an N -bit oracle string in

the bounded error setting.

Proof: Let f be the N -bit Boolean function that is 1 if and only if its input is the same as

the oracle string x. For each Hamming neighbor y of x, we have f(x) 6= f(y). The result

then follows from Lemma 2.2.1. �

In the classical case N oracle queries are required to determine the oracle string. If

the lower bound of Ω(
√
N) oracle queries were asymptotically tight, then there would be

19



quadratic improvement over the classical case for this problem. This seems plausible in light

of Grover’s algorithm. However, Ω(N) lower bounds are known for Boolean functions in the

quantum oracle model, we can thus infer that Theorem 2.3.1 is not asymptotically tight.

Theorem 2.3.2. N/2 oracle queries are required to determine an N -bit oracle string in the

bounded error setting.

Proof: Once we compute the oracle string, we can compute its PARITY with no additional

queries. Beals et al. proved that N/2 oracle queries are required to compute PARITY for an

N -bit oracle string in the bounded error setting [2]. �

We now see an apparent limitation of Ambainis’ Theorem; the result attained was

quadratically worse than the asymptotically tight lower bound. We will show in the next

section that the weak lower bound in Theorem 2.3.1 is indeed the best that can be attained

through application of Ambainis’ Theorem.

2.4 Singleton Functions

An N -bit Boolean function that evaluates to 1 for exactly one input is a singleton function.

We will show that for any N -bit singleton function Ambainis’ Theorem can always attain a

lower query bound of Ω(
√
N), but no better.

The proof of the Ω(
√
N) lower query bound for determining the oracle string in Theorem

2.3.1 can equally well be applied to any singleton function.

Corollary 2.4.1. Ω(
√
N) oracle queries are required to compute any N -bit singleton func-

tion in the bounded error setting.

Theorem 2.4.1. Ω(
√
N) is the best lower bound on the number of oracle queries required

to compute an N -bit singleton function that can be attained from Theorem 2.1.1.
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Proof: We will consider every possible choice of X, Y , and P in Theorem 2.1.1.

Without loss of generality, let X contain the single input x such that f(x) = 1. Let Y

be any subset of the 2N − 1 bit strings for which f(y) = 0. If P is not the complete relation

X × Y then some element y ∈ Y is not related to x by P , so the m′ component of Theorem

2.1.1 is 0, giving a vacuous lower bound. Thus P is the complete relation.

Here m = |Y |, and m′ = l′ = 1. The final parameter l is the maximum over all i of the

number of y ∈ Y that differ from x in the ith bit position.

From Ambainis’ Theorem Ω(
√

m/l) oracle queries are required to compute f . We will

prove that m/l ≤ N . Let Yi be the number of y ∈ Y that differ from x in the ith bit, so

that l = maxi{Yi}. If we construct Y by adding elements to it one at a time, then for each

element we increment m, and at least one Yi. After the first element m = l = 1, and by the

pigeonhole principle m/maxi{Yi} ≤ N . �

This result coupled with the N/2 lower bound for the singleton function of determining

the oracle string leads immediately the the following corollary.

Corollary 2.4.2. There exist functions for which Ambainis’ Theorem 2.1.1 can not attain

asymptotically tight lower bounds.

Despite this limitation, the theorem can still prove lower bounds for many Boolean func-

tions. From this point forward all our lower bounds are directly or indirectly attained through

Ambainis’ Theorem.

2.5 Partially Symmetric Functions

Definition 2.5.1. A symmetric function is a Boolean function whose value depends only

on the Hamming weight of the input.
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Recall that the Hamming weight of a bit string is the number of 1’s it has.

Consider the special class of N -bit Boolean functions f such that f(x) = 1 for all inputs

x of Hamming weight a, and f(x) = 0 for all inputs x of Hamming weight b. Without loss

of generality assume a < b. We will attain a lower bound depending only on the parameters

a and b.

Theorem 2.5.1. Let f be an N -bit Boolean function such that for some a < b, |x| = a

implies f(x) = 1, and |x| = b implies f(x) = 0. Then

Ω

(
√

(N − a)b

(b− a)2

)

oracle queries are required to compute f in the bounded error setting.

Proof: To prove Theorem 2.5.1 we apply Theorem 2.1.1.

Let X be the strings of Hamming weight a, and let Y be the strings of Hamming weight

b. If we think of the bit strings in X and Y as defining subsets of {1, 2, . . . , N} where a 1 in

the ith position means the set contains i, then P is just ⊂, the proper subset relation.

Each set x ∈ X is a subset of m =
(

N−a

N−b

)

sets y ∈ Y . For any element i ∈ x, there are

l =
(

N−a−1
N−b

)

supersets y ∈ Y such that i ∈ y and x ⊂ y.

Each set y ∈ Y is a superset of m′ =
(

b

a

)

sets x ∈ X. For any element i ∈ y, there are

l′ =
(

b−a

a

)

subsets x ⊂ y such that i 6∈ x.

Thus,

mm′

ll′
=

(

N−a

N−a

)(

b

a

)

(

N−a−1
b−a−1

)(

b−1
a

) =
(N − a) b

(b− a)2
,

so by Theorem 2.1.1

Ω

(
√

(N − a)b

(b− a)2

)

oracle queries are required to compute f . �
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Like Lemma 2.2.1, this result allows us to easily attain lower bounds for many functions.

In general, the closer a and b are to each other and to N/2 the better. We illustrate the

particular success of Theorem 2.5.1 in the case of symmetric functions in the following two

sections, and with relatively less success in the case of non-trivial monotone graph properties

in Section 3.2.

2.6 AND, OR, MAJORITY, and PARITY

We can use Theorem 2.5.1 to easily prove lower bounds for the well-known symmetric func-

tions AND, OR, MAJORITY, and PARITY. While these results have been previously estab-

lished by Beals et al. [2], the ease with which they are proved through Ambainis’ Theorem

is noteworthy.

AND and OR

AND is the N -bit Boolean function that evaluates to 1 if and only if its input is 1N , and OR

is the N -bit Boolean function that evaluates to 0 if and only if its input is 0N .

Theorem 2.6.1. Ω(
√
N) oracle queries are required to compute the AND or the OR of N

bits in the bounded error setting.

Proof: Let a = N − 1 and b = N . AND evaluates to 0 for all inputs of Hamming weight a,

and 1 for all inputs of Hamming weight b. Therefore by Theorem 2.5.1

Ω

(
√

(N − (N − 1))N

(N − (N − 1))2

)

= Ω
(√

N
)

oracle queries are required to compute AND in the bounded error setting. A virtually

identical proof with a = 0 and b = 1 follows for OR. �
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Beals et al. proved that these lower bounds are asymptotically tight in the bounded error

setting [2]. Observe that we could have just as easily used Theorem 2.4.1 to attain the same

lower bounds, as AND and OR are singleton functions. In the classical case exactly N oracle

queries are required to compute AND or OR. Thus, quadratic improvement is possible in

the quantum bounded error setting.

MAJORITY and PARITY

It is tempting to hope that all Boolean functions, or at least all symmetric Boolean functions,

realize the quadratic speedup of AND and OR. Unfortunately the functions MAJORITY and

PARITY show that for some problems the speedup is at best a constant factor.

MAJORITY is the N -bit Boolean function that evaluates to 1 if and only if more than

half of the input bits are 1. PARITY is the N -bit Boolean function that evaluates to 1 if

and only if the input has an even Hamming weight.

Theorem 2.6.2. Ω(N) oracle queries are required to compute the MAJORITY or the PAR-

ITY of N bits in the bounded error setting.

Proof: Let a = ⌊N/2⌋ and b = a+ 1. MAJORITY takes on a 0 for all inputs of Hamming

weight a and a 1 for all inputs of Hamming weight b. PARITY takes on one of {0, 1} for all

inputs of Hamming weight a and the other for all inputs of Hamming weight b. Therefore

by Theorem 2.5.1

Ω





√

√

√

√

(

N −
⌊

N
2

⌋) (⌊

N
2

⌋

+ 1
)

(⌊

N
2

⌋

+ 1−
⌊

N
2

⌋)2



 = Ω(N)

oracle queries are required to compute either function. �

Since both classical and quantum algorithms can compute any function of N bits with

N oracle queries, this lower bound is asymptotically tight. Beals et al. previously proved
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these results [2]; again, the simplicity that Ambainis’ Theorem affords is the main point of

interest.

2.7 Nonconstant Symmetric Functions

AND, OR, MAJORITY, and PARITY are all symmetric functions, and the lower bounds

attained in the preceding section are all asymptotically tight. Our success leads us to inves-

tigate what we can prove about symmetric functions in general.

Theorem 2.7.1. Ω(
√
N) oracle queries are required to compute any N -bit nonconstant

symmetric Boolean function in the bounded error setting.

Proof: For any N -bit nonconstant symmetric Boolean function, there are Hamming weights

a and b = a + 1 with 0 ≤ a ≤ N − 1 such that the function differs on inputs of Hamming

weights a and b. Otherwise the function would be constant.

By Theorem 2.5.1

Ω

(
√

(N − a)(a+ 1)

(a+ 1− a)2

)

= Ω
(

√

(N − a) (a+ 1)
)

= Ω
(√

N
)

oracle queries are required to compute the function. �

Depending on the value of a in Theorem 2.7.1 we may be able to provide a better lower

bound than Ω(
√
N). This result was previously established by Beals et al. through a more

complicated method of polynomials [2]. No better result can be attained for the class of

all symmetric Boolean functions as Beals et al. provide O(
√
N) oracle query algorithms to

compute the symmetric functions AND and OR [2]. Our success here leads us to apply the

results of Chapter 2 to graph properties, which are very well studied in the classical oracle
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query model, in Chapter 3. While graph properties are not necessarily “symmetric” in the

sense of Definition 2.5.1, they do display a kind of symmetry.
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Chapter 3

Graph Properties

In the previous chapter we proved lower query bounds for Boolean functions whose outputs

show symmetry with respect to the Hamming weight of the inputs. We now consider lower

bounds for graph properties. In Section 3.1 we cover the definitions of deterministic decision

trees, evasiveness and graph properties, and formalize how we will represent graphs as bit

strings so that we may examine them in the oracle query model. We also present the

Aanderaa-Karp-Rosenberg conjecture, which motivates the study of non-trivial monotone

graph properties in particular.

We apply the result of Section 2.5 with limited success to generic non-trivial monotone

graph properties in Section 3.2. We then apply Ambainis’ Theorem 2.1.1 to attain new

lower bounds of Ω(V ) for computing connectivity and bipartiteness in Sections 3.2.1 and

3.2.2. The lower bounds attained for these problems leads us to question if there is a

quantum extension of the Aanderaa-Karp-Rosenberg conjecture in the quantum bounded

error setting, in Section 3.3 we establish that there is not.

3.1 Preliminaries

Deterministic Decision Trees: A decision tree of N bits is a rooted binary tree. Each

internal node of the tree contains an index i ∈ {1, . . . , N} and has two children. Each leaf
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contains either a 1 or a 0. To determine the value of the deterministic decision tree on an

input x ∈ {0, 1}N we traverse the tree starting at the root. At each internal node we examine

the xi, where i is the index stored at that node. If xi = 1 we follow the path through the

left subtree; if xi = 0 we follow the path through the right subtree. The value stored at the

leaf that we eventually reach is the output of the algorithm. Any decision tree computes an

N -bit Boolean function. There are many different deterministic decision trees that compute

any given function.

The decision tree complexity of a Boolean function is the minimum depth of any decision

tree that computes that function. We denote the decision tree complexity of a Boolean

function f by D(f). The decision tree complexity of a function f is just its classical oracle

query complexity. Any decision tree of depth D(f) determines a minimal sequence of oracle

queries that allow us to compute f(x) for any input x.

Evasive Functions: Any N -bit Boolean function f has a deterministic decision tree com-

plexity associated with it. AnN -bit Boolean function is evasive if and only if its deterministic

decision tree complexity is N . Some evasive graph properties are connectivity, bipartiteness,

is the graph a tree, and does the graph have k edges.

Evasive functions are then the hardest problems in the classical oracle query model; for

some input we are required to examine every possible edge. The nonconstant symmetric

functions AND, OR, MAJORITY, and PARITY of Section 2.6 are evasive; indeed, all non-

constant symmetric function are evasive (consider two consecutive Hamming weights the

function differs on, a and a+ 1, the adversary answers 1 to the first a queries, and 0 to the

rest).

Graph Properties: A graph property is a set of graphs closed under graph isomorphism.

If a graph property holds for some graph G, it must hold for all graphs G′ isomorphic to
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G. For example: “Is there an edge from vertex 1 to vertex 2?” is not a graph property, but

“Does the graph have one edge?” is. Some graph properties are symmetric, such as “Is the

graph complete?” Others exhibit symmetry in a different sense than that of Definition 2.5.1,

such as “Does the graph contain a vertex of degree 5?”

A non-trivial graph property is one that is false for some graph, and true for some

graph. If adding an edge to a graph can not make a property fail the graph property is

called monotone. Examples of well-known monotone graph properties are whether a graph

is connected, acyclic, non-bipartite, complete, non-planar, or non-k-colorable. Nonmonotone

graph properties include whether the graph is a tree and k-regularity.

Conjecture 3.1.1 (Aanderaa-Karp-Rosenberg). All non-trivial monotone graph prop-

erties are evasive in the classical deterministic setting.

Conjecture 3.1.1 is known to be true for graphs whose number of vertices is a prime power

[14].

The conjecture makes monotone graph properties an appealing target for study in the

quantum oracle model. We attained asymptotically tight lower bounds for evasive symmetric

functions in Chapter 2. In non-trivial monotone graph properties we have a class of functions,

conjectured to be evasive, that exhibit a kind of symmetry due to their invariance under

relabeling of vertices. We hope that Ambainis’ Theorem can provide us with asymptotically

tight lower bounds for non-trivial monotone graph properties as they did for nonconstant

symmetric functions.

Representing Graphs as Bit Strings: Before we begin we need a way to represent a

graph as a bit string, and graph properties as Boolean functions on that bit string if we wish

to apply Theorem 2.1.1 or any of its derivatives. When representing graphs as bit strings it

is helpful to restrict the types of graphs we will consider.

29



F

E

A

B

CD

Figure 3.1. An Undirected Graph

B C D E F
A 1 1 0 0 0
B 1 1 0 0
C 0 0 0
D 1 1
E 0

Table 3.1. Above Diagonal Adjacency Matrix Representation of the Graph in Figure 3.1

A simple graph has no multiple edges or loops. The adjacency matrix A of a simple

directed graph has aij = 1 if and only if there is a directed edge from vertex i to vertex j.

Since aii = 0 for all vertices i of a simple graph, we need only V (V − 1) bits to represent

such graphs with V vertices. For undirected graphs, the adjacency matrix is symmetric

across the diagonal. Thus we can represent any undirected simple graph with a bit string of

length V (V − 1)/2. A simple undirected graph is depicted in Figure 3.1, its above-diagonal

adjacency matrix representation can be seen in Table 3.1. Now that we can represent a graph

by its above diagonal adjacency matrix, graph properties are simply Boolean functions on

matrix representations.

3.2 Non-trivial Monotone Graph Properties

For a non-trivial monotone graph property p, there exists some a < b such that the property

holds for all graphs with b edges, but not for any graph with a edges. We can therefore apply
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Theorem 2.5.1. While this may yield a good lower bound, sometimes it will give us a trivial

Ω(1) lower bound.

3.2.1 Graph Connectivity

One of the most fundamental non-trivial monotone graph properties is graph connectivity.

Graph connectivity is known to be evasive [7], so V (V − 1)/2 oracle queries are required to

decide graph connectivity for a simple undirected graph in the classical case.

Every graph with V − 2 edges is unconnected, and every graph with (V − 1)(V − 2)/2

edges is connected. We can apply Theorem 2.5.1 with a = V − 2, b = (V − 1)(V − 2)/2, and

N = V (V − 1)/2. This gives us only the trivial lower bound

Ω









√

√

√

√

√

√

(

V (V−1)
2

− (V − 2)
)(

V (V−1)
2

− (V − 2)
)

(

V (V−1)
2

− (V − 2)− (V − 2)
)2









= Ω(1).

However, through better choices of the sets X and Y and the relation P for Theorem 2.1.1

we will prove that Ω(V ) oracle queries are required to compute graph connectivity in the

bounded error setting.

To prove a lower bound for graph connectivity we will need Lemmas 3.2.1 and 3.2.2,

which delineate classes of connected and unconnected graphs whose number of edges differ

by one.

Lemma 3.2.1. If the above diagonal adjacency matrix representation of a simple undirected

graph has exactly one 1 in each row then the graph it represents is connected.

Proof: There is a path from every vertex to vertex V , and there are V − 1 edges, therefore

the graph is a tree. Trees are connected. �
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Lemma 3.2.2. If the above diagonal adjacency matrix representation of a simple undirected

graph has exactly one 1 in each row except one row which has all 0’s then the graph it

represents is not connected.

Proof: No graph with V − 2 edges is connected. �

Theorem 3.2.1. Ω(V ) oracle queries are required to decide whether a simple undirected

graph is connected in the bounded error setting.

Proof: We apply Theorem 2.1.1, we consider only simple undirected graphs with V ≥ 3.

Let X be the graphs whose adjacency matrix has exactly one 1 in each row. By Lemma

3.2.1 all such graphs are connected. Let Y be the graphs in which there is exactly one 1

in each row of the adjacency matrix, with the exception that one of the upper ⌊(V − 1)/2⌋

rows contains only 0’s. By Lemma 3.2.2 all such graphs are unconnected.

For the relation P let xPy if and only if the graphs x and y differ by one edge. We

immediately have l = l′ = 1. For each element x ∈ X, if y is identical to x with the exception

that one of its first ⌊(V − 1)/2⌋ rows contains all 0’s then xPy, som = ⌊(V − 1)/2⌋. A similar

argument leads to m′ = ⌊(V − 1)/2⌋+ 1 if V is odd, and ⌊(V − 1)/2⌋+ 2 if V is even.

For simplicity take m′ = ⌊(V − 1)/2⌋; lowering m′ can only worsen our result. Theorem

2.1.1 now implies a lower bound of

Ω

(

√

mm′

ll′

)

= Ω





√

⌊

V−1
2

⌋2

1



 = Ω(V ) .

�

As an illustration of the sets X and Y and the relation P used in the proof of Theorem

3.2.1, consider a graph with vertex set {Q,R, S, T}, the graphs in X and Y and the relation

P are depicted in Figure 3.2.
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Figure 3.2. Illustration of Theorem 3.2.1

For the classical case connectivity is known to be evasive [7]. If this lower bound is

known elsewhere for the quantum bounded error setting the author is unaware of it. It is

not known if this lower bound is asymptotically tight in the bounded error setting. It seems

reasonable that this bound could be tight, given the quadratic speedups realized by AND

and OR. Then again it also seems reasonable that there is no asymptotic speedup as is the

case for MAJORITY and PARITY.

3.2.2 Bipartiteness

A second fundamental non-trivial monotone graph property is whether a graph is bipartite.

This graph property is also evasive.

Theorem 3.2.2. Ω(V ) oracle queries are required to decide whether a simple undirected

graph is bipartite.

Proof: We apply Lemma 2.2.1, we will only consider simple undirected graphs with V ≥ 3.
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Let x be the complete bipartite graph with the first ⌊V/2⌋ vertices and second ⌈V/2⌉

vertices forming the partitions. Observe that adding any edge to x results in a non-bipartite

graph. There are

V (V − 1)

2
−
⌊

V

2

⌋⌈

V

2

⌉

= Θ(V 2)

such graphs, as there are V (V − 1)/2 possible edges, ⌊V/2⌋ ⌈V/2⌉ of which are in x. Lemma

2.2.1 implies the lower bound Ω(
√
V 2) = Ω(V ). �

If this lower bound is known elsewhere the author is unaware of it. It is not known if

this lower bound is asymptotically tight.

Having seen two fundamental monotone graph properties with lower bounds potentially

quadratically lower than the classical case it is tempting to believe these lower bounds are

tight and that there is quadratic speedup in the quantum bounded error model for non-trivial

monotone graph properties. To see this is not the case we need only examine the non-trivial

monotone graph property analogous to MAJORITY.

3.3 No Quantum Extension of the

Aanderaa-Karp-Rosenberg Conjecture

The Aanderaa-Karp-Rosenberg conjecture states that all non-trivial monotone graph prop-

erties are evasive in the classical deterministic setting. A natural extension of the Aanderaa-

Karp-Rosenberg Conjecture to quantum computing would conjecture all non-trivial mono-

tone graph properties have the same query complexity, or at least the same asymptotic query

complexity in the bounded error setting. To see that no such extension can hold, observe

that the following non-trivial monotone graph properties can be determined by running the

algorithms for OR, AND, and MAJORITY respectively:
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1. Does the graph have at least 1 edge?

2. Is the graph complete?

3. Does the graph have more than half of all possible edges?

Beals et al. provide an O(V ) oracle query algorithm for computing the AND or OR of an

O(V 2) bit oracle string in the bounded error setting [2], and we have a lower bound of Ω(V )

oracle queries required to compute them from Section 2.6. We have a lower bound of Ω(V 2)

oracle queries required to compute the MAJORITY of anO(V 2) bit oracle string from Section

2.6. Thus some decision problems for non-trivial monotone graph properties require Θ(V )

oracle queries and others Θ(V 2) in the bounded error setting, and there is no extension of

the Aanderaa-Karp-Rosenberg conjecture to the quantum bounded error setting. This does

not come as a complete surprise, as there are quadratic gaps known between the classically

evasive symmetric functions from Chapter 2 in the quantum bounded error setting. More

disappointing is that there are graph properties for which the quantum bounded error setting

can provide only constant speedup over the classical case.
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Chapter 4

Boolean Functions

In this chapter we consider increasingly general classes of functions. We first examine lower

bounds for tree functions in Section 4.1 and prove Ω( 4
√
N) oracle queries are required to

compute a tree function of N bits.

We define nondeterministic decision tree complexity in Section 4.2. We then prove that

Ω(
√
N) oracle queries are required to compute any N bit Boolean function with nondeter-

ministic decision tree complexity N in Section 4.3. Finally in Section 4.4 we present our

most general result: Ω( 4
√

D(f)) oracle queries are required to compute a class of Boolean

functions that meet a sensitivity condition and have deterministic decision tree complexity

D(f).

4.1 Tree Functions

Tree functions are Boolean functions of N bits that can be written as a disjunction of

conjunctions in which each of the N variables occurs exactly once. Tree functions are evasive

in the classical case [14].

Theorem 4.1.1. Ω( 4
√
N) oracle queries are required to compute any tree function of N bits

in the bounded error setting.
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Proof: For any tree function f let d be the number of terms, and let cmax be the maximum

number of variables in any conjunction.

The tree function f has a conjunctive term of size cmax. Let x be the input that gives

every variable in that term the value 1, and every other variable 0, so that f(x) = 1. The

inputs attained by negating one of the cmax 1’s in x will yield 0 when evaluated by f . Lemma

2.2.1 implies that Ω(
√
cmax) oracle queries are required to compute f .

The tree function f also has d terms. Let x be the input that vices the first variable of

every term the value 0 and every other variable the value 1, so that f(x) = 0. The inputs

attained by negating one of the d 0’s in x yield 1 when evaluated by f . Lemma 2.2.1 now

implies that Ω(
√
d) oracle queries are required to compute f .

Since d ≥ N/cmax, either cmax >
√
N or d ≥

√
N , and the theorem follows. �

This lower bound is a special case of the Ω( 4
√

D(f)) lower bound for monotone functions

proved by Beals et al. [2], as tree functions are monotone functions with decision tree com-

plexity N . Here we see for the first time a gap that is not quadratic with the classical case.

While this lower bound agrees with the result for monotone functions, the author believes it

is not asymptotically tight. Whether there is an Ω(
√
N) lower bound for computing N -bit

tree functions is an open question.

4.2 Nondeterministic Decision Tree Complexity

In the presentation of the most general results of this thesis we refer frequently to determinis-

tic and nondeterministic decision tree complexity, deterministic decision trees were discussed

in Section 3.1. Readers familiar with these topics can proceed directly to Section 4.3.

Let f be an N -bit Boolean function. We will use the following definitions of László

Lovász and Péter Gács [13].
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For every input x let D(f, x) denote the minimum number of bits of x we could be told

to convince us that f(x) takes on a particular value. For example: D(OR, 0N ) = N . If we

are told fewer than N bits of an input are all 0 we can not determine the value of OR for

that input. For any other input x 6= 0N , D(OR, x) = 1, because we only need to be told

that one bit of the input is a 1. We are not concerned with how many oracle queries we have

to make in the worst case to determine f(x), but rather how many bits we could be told in

the best case to be sure of the value f takes on x.

Definition 4.2.1. D0(f) = max{D(f, x)|f(x) = 0}. D0(f) is the nondeterministic decision

tree complexity of verifying that an input takes on 0 when evaluated by f .

Definition 4.2.2. D1(f) = max{D(f, x)|f(x) = 1}. D1(f) is the nondeterministic decision

tree complexity of verifying that an input takes on 1 when evaluated by f .

Definition 4.2.3. N(f) = max{D0(f), D1(f)} = maxx{D(f, x)}. The nondeterministic

decision tree complexity of computing an N -bit Boolean function f is the maximum of the

nondeterministic decision tree complexities of verifying any input of f takes on one of {0, 1}.

4.3 Nondeterministically Evasive Functions

With an understanding of decision tree complexity we can now prove a lower bound on

a class of evasive functions. In analogy to evasive functions whose deterministic decision

tree complexity is N we call functions with nondeterministic decision tree complexity N

Nondeterministically evasive. Every nondeterministically evasive functions is evasive.

Theorem 4.3.1. Ω(
√
N) oracle queries are required to compute any nondeterministically

evasive N -bit Boolean function in the bounded error setting.
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Proof: We will prove that any nondeterministically evasive N -bit Boolean function f has

an input x such that for at least half of the Hamming neighbors of x disagree with x when

evaluated by f . Once this is proved the theorem will follow from Lemma 2.2.1.

Assume to the contrary that for all inputs x more than half of x’s Hamming neighbors

agree with x. Consider any deterministic decision tree that computes f . Since D(f) ≥

N(f) = N , there is some path P of length N in the tree. Call the variables along this path

a, b, . . . , z, where each label corresponds to a unique number between 1 and N inclusive. Let

xa, xb, . . . , xz be the values of the corresponding bits along the path. Let us rearrange the

order of the input bits so that a is the first input bit, b is the second input bit, and z is the

Nth input bit. Then path P tells us f(xaxb . . . xz) is either 0 or 1, and f(xaxb . . . xz) is the

other. Without loss of generality let f(xaxb . . . xz) = 1 and f(xaxb . . . xz) = 0.

By the pigeonhole principle, there is some bit i < N − 1 such that

f(xaxb . . . xi . . . xz) = 1 f(xaxb . . . xi . . . xz) = 0

f(xaxb . . . xi . . . xz) = 1 f(xaxb . . . xi . . . xz) = 0.

However, if this is the case then we do not need to ask about the ith bit on path P . This

argument follows for any path of length N in our deterministic decision tree. In this case

D0(f) and D1(f) are at most N − 1. N(f) is then N − 1, a contradiction to the condition

that N(f) = N . Therefore our assumption was false, and there is at least one input x such

that at least half of x’s Hamming neighbors yield a different value than x when evaluated by

f . By Lemma 2.2.1 Ω(
√
N) oracle queries are required to compute f in the bounded error

setting. �

This proof establishes that nondeterministically evasive functions have inputs that are

sensitive to negation on at least half of their bits; the result then follows from Lemma

2.2.1. Not all evasive functions are nondeterministically evasive. OR is an example of a
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nondeterministically evasive function; since Beals et al. provide an O(
√
N) algorithm to

compute the OR of N bits, this lower bound is asymptotically tight.

4.4 Sensitive Functions

Nearly all the functions discussed so far have been evasive (or conjectured to be so). In

our final result we consider functions that are not necessarily evasive. We call a Boolean

function f sensitive if for some input x, there are Ω(N(f)) Hamming neighbors y of x such

that f(x) 6= f(y). It is an open question whether there are any nonsensitive functions.

Theorem 4.4.1. O( 4
√

D(f)) oracle queries are required to compute any sensitive function

f in the bounded error setting.

Proof: By Lemma 2.2.1, Ω(
√

N(f)) oracle queries are required to compute any sensitive

Boolean function.

Lovász and Gács [13] proved that D(f) ≤ D0(f) · D1(f), and by definition, N(f) =

max{D0(f), D1(f)}. Thus, N(f) = Ω(
√

D(f)), and the theorem follows. �

Beals et al. proved Ω( 6
√

D(f)) oracle queries are required to compute any Boolean func-

tion in the bounded error setting, but they suspect that this lower bound is not tight [2].

An open question is whether there are any functions which are not sensitive. If not, then

Ω( 4
√

D(f)) oracle queries are required to compute any Boolean function, which would be an

improvement over what is currently known.
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Chapter 5

Open Questions

Ambainis’ Theorem has shown itself to be remarkably versatile in proving lower bounds on

Boolean functions; it can frequently be used to establish asymptotically tight lower bound

with little effort. These lower bounds can be contrasted with classical lower bounds to see

areas where a quantum computer could significantly outperform a classical computer. For

all the functions we have examined the separation found between the best known quantum

and classical lower bounds is a polynomial. Beals et al. proved Ω( 6
√

D(f)) oracle queries are

required to compute an arbitrary Boolean function f with decision tree complexity D(f) in

the bounded error setting [2]. Therefore there can be no exponential separation between the

classical and quantum oracle query complexity for Boolean functions. It should be stressed

that this result has only been proven to hold in the quantum oracle model, only for total

Boolean functions, and only in the bounded error setting (which includes the exact and zero

error settings).

It is suggested by Beals et al. that the Ω( 6
√

D(f)) lower bound on the number of oracle

queries required to compute an arbitrary total Boolean function f is not optimal [2]. It

remains an important open question what the asymptotically tight lower bound is. In Section

4.4 we proved Ω( 4
√

D(f)) oracle queries are required to compute sensitive Boolean functions,

if the need for sensitivity could be eliminated it would give a better lower bound than what

is currently known.
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The importance of quantum computation itself will be quantified by the speedup allowed

by quantum algorithms. If large classes of useful problems are found for which a quantum

algorithm can provide exponential speedup, it will certainly drive interest in the construction

of quantum computing devices. Shor’s algorithm currently stands alone as a useful task that

can be performed exponentially faster by a quantum algorithm than with the best published

classical algorithm. There are many other problems that show this exponential separation,

but the are toy problems tailored to display such speedup and have no practical application.

The current uniqueness of Shor’s algorithm is a great enticement to further study. It is

hard to believe that there is only one useful problem that we can find exponential speedup

for; however, results such as the ones in this thesis seem to indicate that for many reasonable

models of computation only polynomial speedup can be attained. In some way this parallels

the results of Grover’s algorithm which provides quadratic speedup over what is classically

possible for the unordered search problem, but disallows any potential exponential speedup

by its optimality.

Whether a quantum computer of a size great enough to perform useful calculations

can be built is unclear, but great progress has been made. On December 19, 2001, IBM

researchers announced they had factored the number 15 on a quantum computer running

Shor’s algorithm [12]. When tempted to prognosticate about the future of this nascent

technology, it is instructive to examine predictions made around the time of the birth of the

digital computer. In 1949 Popular Mechanics boldly posited:

Where . . . the ENIAC is equipped with 18,000 vacuum tubes and weights 30 tons,

computers in the future may have 1,000 vacuum tubes and perhaps weigh just

one and a half tons[16].

While the future of quantum hardware may be uncertain, a few quantum algorithms dis-

covered so far are impressive. The discovery of fundamental tasks that can be performed
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quadratically faster in the bounded error setting than in the classical setting, such as com-

puting the AND and OR of N bits, promise surprising results for more interesting problems

in the future.
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