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1 Motivation for Study of Quantum Computing

In the early 1980’s physicist Richard Feynman observed that no classical com-
puter could simulate quantum mechanical systems without incurring exponen-
tial slowdown. [WC98] At the same time, it seems reasonable that a computer
which behaves in a manner consistent with quantum mechanics could, in princi-
ple, simulate such systems without exponential slowdown. This possible viola-
tion of the Polynomial Church-Turing thesis: “any reasonable attempt to model
mathematically computer algorithms and their time performance is bound to
end up with a model of computation and associated time cost that is equivalent
to Turing machines within a polynomial.” [EID00][Papadimitriou94] Piqued
much interest in the field.

At the same time, the evolution of classical computers has seen the size of
transistors and memory elements shrink exponentially. These components can
not continue this trend indefinitely and still behave in a classical manner. At
the current rate sometime around 2020 the number of atoms used to represent
a single bit of information will be one. [WC 98] At this scale the quantum
behavior of the memory element must be dealt with.

1.1 A “Killer App” for Quantum Computing

For many years the study of quantum computing was primarily an academic
curiosity, that changed rapidly in 1994, when Peter Shor published his paper
“Algorithms for quantum computation: Discrete logarithms and factoring.”
The primary result of the paper was a polynomial time algorithm for factor-
ing large integers. [Shor94] It is not known if there is a classical algorithm for
factoring large integers efficiently, but the best algorithms published thus far
are super-polynomial. [WC98] This algorithm coupled with the prominence of
cryptographic systems based on factoring large integers fueled study of quantum
computation, both from a algorithmic and a manufacturing point of view.

Shortly after that, in 1996 L. K. Grover published his paper providing
a O(

√
n) time algorithm for finding a single marked element in an unsorted

database of n elements. [Grover96] The best possible classical algorithm will
run in O(n) time. This search problem was not the first problem for which a
quantum computer was shown to be better than any possible classical computer,
but it was the first problem of real utility found where a quantum computer out-
performs a classical computer in an asymptotic sense. While Shor’s algorithm
may be of more immediate utility, Grover’s algorithm seems more interesting in
a theoretical sense, as it identifies substantial efficiency for a real world problem
in quantum computation.
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2 The Quantum Computer

2.1 The Qubit

The bit is the fundamental unit of storage in a classical computer, similarly, the
basis of quantum computation is a qubit. The qubit is similar to a bit in that
when measured its value will be either 0 or 1. It differs primarily in what it
is doing when it is not being measured. In particular, a qubit can exist in any
superposition of the 0 and 1 state simultaneously. When a qubit in such a state
is measured the superposition will be destroyed. It will be found to be uniquely
in the 0 or 1 state with some probability for each, determined by the particulars
of the superposition prior to the measurement. [WC98]

2.2 The Quantum Register

A quantum register is just a group of qubits, all part of the same quantum
mechanical system. Just as a n bit register is capable of representing 2n distinct
values, so too will a n bit quantum register assume one of 2n basis states when
measured. [WC98]

A quantum algorithm consists of a sequence of operations on that register,
to transform it into a state which, when measured, yields the desired result with
high probability.

Note that a n bit quantum register can store an exponential amount of
information. The register as a whole can be in an arbitrary superposition of the
2n base states which it can be measured to be in. While in this superposition,
and computation applied to the register will be applied to each component of the
superposition, this behavior follows from the linearity of operators on quantum
mechanical systems. This behavior, called quantum parallelism is the basis for
most quantum algorithms.

2.3 A Formal Description of a Quantum Register

The state of any quantum mechanical system is described by a state vector in
an appropriate Hilbert space. A Hilbert space is a complex linear vector space.
[Greenwood00] This is similar to more familiar vector spaces with the exception
that vectors may have complex lengths. A linear vector space is one in which
the sum or constant multiple of a vector within the space is within the space as
well. [Griffiths95]

In the case of our n bit quantum register, our Hilbert space will be of dimen-
sion 2n. The orthogonal basis for the Hilbert space can be conveniently chosen
to be the 2n possible basis states that the quantum register can be found in
when measured.

With the chosen basis, the projection of the state vector on the i’th basis
vector will be the amplitude of the portion of the wave function corresponding
to the register being solely in the i’th state.
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The state vector can be written Ψ = (a1, a2, . . . aN )T , where N = 2n. ai is
the amplitude of the wave function in the i’th state, or equivalently the projec-
tion of the state vector onto the i’th basis state. The probability of measuring
the register in the i’th state is then:

|ai|2
∑N

j=1 |aj |2

where |c|2 = c∗c, here * is the complex conjugate operator, so if c = a+ b
√
−1,

|c|2 = a2 + b2. [WC98] In general the amplitude of any component of the wave
function may be complex, but Grover’s algorithm itself does not use any complex
amplitudes.

If we we insist that
N
∑

j=1

|aj |2 = 1

then the probability of measuring the register to be in the i’th state becomes
simply |ai|2, where ai is the i’th component of the state vector. In this case we
say the vector is normalized.

In the absence of measurement the state vector of any quantum system,
including our quantum register, will evolve according to the Schrödinger wave
equation. The Schrödinger equation has the property that if the solution is
normalized at any time, it is normalized at all times. [Griffiths95] Therefore if
we initialize our quantum register to be normalized, we can be sure that at all
future times the probability of measuring the quantum register in the i’th state
will be given simply by |ai|2.

A consequence of the Schrödinger equation is that the evolution of the system
must be reversible. At any point in time, if we know the solution to Schrödinger’s
equation, we can derive its solution at all past and future times. Thus any
transformation we wish to perform on our system should be reversible. For
our quantum register this means that for any operation we use, we must be
able to say what the state of the register was before the operation, given the
operation and the resulting state. [Grover00] These remarks apply only to
quantum systems evolving in isolation of their environment. Any measurement
of the register will irreversibly alter the system, collapsing its wave function into
one of its base states.

3 Performing Computations

Given the above constraints, it is not clear how to proceed in order to have our
quantum register undergo a transformation from an initial state to some final
state which performs a useful calculation. Further, if we wish to make use of
quantum parallelism, it is not clear if the amplitude of the desired state will be
large enough for there to be a good chance of finding the register in this state.

Since an operation on our n bit quantum register is simply a process which
transforms our state vector in our N = 2n dimensional Hilbert space from state
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Ψ = (a1, a2, . . . aN )T to another state Ψ
′

= (a
′

1, a
′

2, . . . a
′

N )T , we can represent

any possible operator T̂ as a matrix:

T =











T11 T12 . . . T1N

T21 T22 . . . T2N

...
...

...
TN1 TN2 . . . TNN











The matrix element Tij is the projection of the j’th component of the input
onto the i’th component of the output due to the operator. [Griffiths95]

While mathematically any transformation can be achieved by assigning the
appropriate values to the matrix elements, only a very small class of operators
represent physically realizable operators on a quantum system. For a matrix
to represent an operator which acts on a quantum mechanical system, its ef-
fect on the state vector must agree with conditions imposed by the Schrödinger
equation, namely the operation must be reversible, and it must preserve nor-
malization of the state vector.

Physically realizable quantum transformations are reversible, thus we are
immediately restricted to consideration of operators whose matrix representa-
tions are invertable, if the matrix representing the operation T̂ is singular (the
determinant of T̂ ’s matrix representation is 0), it has no inverse, and thus can
not be reversed. So, invertability is a necessary, but not sufficient condition for
a matrix representation of a legal operator.

If we further require that the sum of the kinetic and potential energy (called
the Hamiltonian) of our system is not changing with time, then the matrix rep-
resenting any legal transformation will be “unitary”. A matrix T is unitary if
the transpose of the complex conjugate of T is T−1. [Griffiths95] So, we restrict
our candidates for operators to ones whose matrices are unitary, which will be a
necessary and sufficient condition for being a physically realizable transforma-
tion on a quantum mechanical system with a time independent Hamiltonian.
Systems with time dependent Hamiltonians’ are also feasible, but are not re-
quired to perform either Grover’s or Shor’s algorithm, and are not considered
here.

Now the specification of a quantum algorithm is simply a specification for an
initial normalized state vector of the quantum register, and a series of unitary
matrices representing legal transformations on that state vector. Eventually we
will measure our register, and if our operators are chosen well we will measure
the register to be in a desired state with high probability.

4 Grover’s Algorithm

Assume you have a system with N = 2n states labeled S1, S2, . . . SN . These 2n

states are represented by n bit strings. Assume there is a unique marked element
Sm that satisfies a condition C(Sm) = 1, and for all other states C(S) = 0. We
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assume that C can be evaluated in unit time. Our task is to devise an algorithm
which minimizes the number of evaluations of C.

The idea of Grover’s algorithm is to place our register in a equal superposi-
tion of all states, and then selectively invert the phase of the marked state, and
then perform an inversion about average operation a number of times. The se-
lective inversion of the marked state follows by the inversion about average steps
have the effect of increasing the amplitude of the marked state by O(1/

√
N).

Therefore after O(
√
N) operations the probability of measuring the marked

state approaches 1. [Grover96]
Grover’s algorithm is as follows:

1. Prepare a quantum register to be normalized and uniquely in the first
state. Then place the register in an equal superposition of all states
(

1√
N
, 1√

N
. . . 1√

N

)

by applying the Walsh-Hadamard operator Ŵ . This

means simply the state vector will be in an equal superposition of each
state.

2. Repeat O(
√
N) times the following two steps (the precise number of iter-

ations is important, and discussed below):

(a) Let the system be in any state S. If C(S) = 1, rotate the phase
by π radians, else leave system unaltered. It is worth noting that
this operation has no classical analog. We do not observe the state
of the quantum register, doing so would collapse the superposition.
The selective phase rotation gate would be a quantum mechanical
operator which would rotate only the amplitude proportional to the
marked state within the superposition.

(b) Apply the inversion about average operator Â, whose matrix repre-
sentation is: Aij = 2/N if i 6= j and Aii = −1+2/N to the quantum
register.

3. Measure the quantum register. The measurement will yield the n bit label
of the marked state C(SM ) = 1 with probability at least 1/2.

[Grover96]

4.1 An Illustration of Grover’s Algorithm

The following graphics illustrate the amplitudes of the varying states of a 3 bit
quantum register undergoing the steps to Grover’s algorithm:

Initially we prepare the register to be uniquely in the first state.

Avg.

Register initially in first state
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We then perform theWalsh-Hadamard transformation on the register, putting
the register in a equal superposition of all 8 possible states.

Avg.

Register after Walsh−Hadamard

We then perform the selective phase inversion, which switches the sign of the
amplitude of the marked state, for the purposes of this illustration the marked
state is the fourth state.

Avg.

Register after selective invert
4 is the desired state

Finally we perform the inversion about average operation, which increases
the amplitude of the state which was inverted in the previous step.

Avg.

Register after inversion about 
average.

4.2 Outline of Proof of Correctness of Grover’s Algorithm

To prove that Grover’s algorithm successfully finds the unique marked state in
O(

√
N) operations we must show the following:

1. That there is a operator to produce a equal superposition of states for
part 1 of the algorithm. This operation is well known and referred to as
the Walsh-Hadamard operator.

2. That there is a operator to rotate the phase of a given state.

3. That the definition of the matrix A : Aij = 2/N if i 6= j and Aii =
−1 + 2/N is an inversion about average operator.

4. That the matrix representations of all operators used are unitary. If this
is the case then these transformations are physically realizable.

5. That repeated applications of step 2 of the algorithm increase the ampli-
tude of the marked state, such that after O(

√
N) iterations the probability

of measuring the marked state is at least 1/2.
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4.3 Operator to Create Equal Superposition of States

An equal superposition of states is created by the application of the well known
Walsh-Hadamard operator. The matrix representing the Walsh-Hadamard op-
erator for an n bit quantum register is a 2n × 2n matrix whose elements are
defined to be: Wij = 2−n/2(−1)ī·j̄ , where ī is the binary representation of i,
and ī · j̄ is the bitwise dot product of the n bit strings i and j, i and j range
from 0 to (N − 1), [Grover96] Put another way, Wij = ±2−n/2, where the sign
is positive if the bitwise AND of i and j has an even number of 1’s and negative
otherwise. [Grover00]

The reason the Walsh-Hadamard operator inverts the sign (or rotates the
phase π radians) in certain states is to allow it to be reversible. We are asking
for an operator which places a quantum system in an equal superposition of
states. For a classical probabilistic system this would necessarily be a irreversible
process, as the resultant state would be the same for any input. Since the
amplitudes of a quantum state can be complex, the probability of measuring
the a system in a given state is the absolute square of the amplitude in the
given state. Thus the Walsh-Hadamard operation can encode information in
the phases of the states to make it reversible, while still placing the register in
a state where if measured any basis state will be found with equal probability.
[Grover00]

We may assume that prior to step 1 of our algorithm that our state is
prepared to be identically in one of the N = 2n basis states. Assume that we
place our register initially in the state where each of the bits is zero, then the
state vector for our n bit register is: Ψ = (1, 0, 0, . . . 0)T . As a reminder, the
state vector Ψ has N = 2n components, representing each of the states our n bit
quantum register can be measured in. After application of the Walsh-Hadamard
transformation the j’th element of the state vector is W0j = 2n/2(−1)0̄·j̄ , note
that the bitwise dot product of the zero vector and any j vector is 0, thus the
sign of each amplitude is positive.

The result is an equal superposition of each state, all with positive amplitude.
This was attained by performing the Walsh-Hadamard operator to the register
prepared solely in the first state.

Note that this can be done for a n bit quantum register in O(n) = O(lgN)
time, although to simulate this on a classical computer we must perform no
less than O(N) operations. Here we see an example of the kind of exponential
slowdown in classical simulation of quantum systems that Feynman observed.

4.4 Operator to Rotate Phase

The matrix representing an arbitrary rotation operator is very simple. It takes
the form of a diagonal matrix with Rij = 0 if i 6= j, and Rii = e

√
−1φi . Here

φi is an arbitrary real number, and from Euler’s formula we know the diagonal
entries may be equivalently written as cosφi +

√
−1 sinφi. [Grover96]

For the selective phase rotation we will need such a matrix which rotates
only the phase of the marked state π radians. This will be diagonal matrix with
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all ones on the diagonal, except the k’th diagonal element will be -1 when the
marked state is the k’th state. Obviously we can not construct anything like
this operator classically, as to do so we would need to know the marked state
in advance.

How such a gate would be implemented in quantum mechanical system is a
little murky, I will leave it in Grover’s own words:

“In a practical implementation this would involve one portion of the
quantum system sensing the state and then deciding whether or not
to rotate the phase. It would do it in a way so that no trace of
the state of the system be left after this operation (so as to ensure
that paths leading to the same final state were indistinguishable and
could interfere). The implementation does not involve a classical
measurement.” [Grover96]

We shall take the existence of such a gate as a given for the remainder of
the paper.

4.5 Inversion About Average Operator

We define the inversion about average operation on our state vector as an op-
erator that takes the amplitude of the i’th state, and increases or decreases it
so that it is as much above or below the average as it was below or above the
average before the operation. [Grover96]

The matrix representation of the inversion about average operator Â is de-
fined: Aij = 2/N if i 6= j and Aii = −1 + 2/N . Note that A = −I + 2P where
I is the identity matrix, and P is the matrix with each element is equal to 1/N .
Observe that P has the following two properties, first P 2 = P , and second Pv,
for any vector v, results in a vector v

′

with each element being the arithmetic
average of the the elements of v. [Grover96]

Now we can examine the operation of A on an arbitrary vector v. Av =
(−I + 2P )v = −v + 2Pv, By the second property of P above, note that Pv is
a vector with each element equal to a where a is the arithmetic average of the
elements of v. Therefore the i’th component of the vector is (−vi+2a) which can
be rewritten a+(a− vi). Thus the i’th element is exactly as much above/below
average as it was below/above average before the operation. [Grover96]

4.6 Proof that Operations are Unitary

If the above matrices not unitary, they will not be physically realizable, at
least for systems with time independent Hamiltonians, which are the only ones
being considered here. It must be shown that each of the above operations is
unitary. As a reminder, a unitary matrix is one whose inverse is the same as the
transpose of its complex conjugate, and unitary matrices represent reversible
operators that preserve normalization.

The Walsh-Hadamard transformation is one of the fundamental unitary
transformations used in quantum computing. The proof is simply a great deal of
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linear algebra, showing W 2 = I (since W is real and symmetric) and is omitted
for brevity.

The rotation matrix R with Rij = 0 if i 6= j, and Rii = e
√
−1φi . Here φi is

an arbitrary real number.
It is easy to see R’s complex conjugate transposed is the inverse of R. When

R is multiplied by it’s complex conjugate, the only non-zero elements are on the
diagonal, and when the diagonal elements are multiplied the powers of e will
cancel, resulting in e0 = 1 on the diagonal, the identity matrix. [Grover96]

To show the inversion about average matrix A is unitary, recall that A may
be written as A = −I + 2P where:

• I is the identity matrix

• P is the matrix with each element is equal to 1/N

Recall that P 2 = P .
A is real and symmetric, so A is its own transposed complex conjugate, and

we must show A2 = I.
A2 = (−I + 2P )2 = I2 − 2P − 2P + 4P 2 = I − 4P + 4P = I
[Grover96]

4.7 Proof that Algorithm Increases Amplitude of Desired

State

Having established that the transformations in question are unitary, and thus
physically realizable, it is left to establish that iterations of Grover’s algorithm
increase the amplitude of the marked state C(Sm) = 1 enough that the proba-
bility of measuring state Sm is at least 1/2 in O(

√
N) operations.

We start by examining the effect of the inversion about average operator A.

4.7.1 Theorem 1

Theorem 1: Given the state vector of our register with one state with amplitude
k, and every other state with amplitude l, after an application of A:

• the amplitude in the one state is k
′

=
(

2
N − 1

)

k + 2 (N−1)
N l

• the amplitude of the remaining (N − 1) states is l
′

= 2
N k + (N−1)

N l

Proof: Given the definition of A as Aij = 2/N if i 6= j and Aii = −1+ 2/N ,
it follows from the definition of matrix multiplication of k and l by A that:

• k
′

=
(

2
N − 1

)

k + 2 (N−1)
N l

• l
′

= 2−N
N l + 2

N k + 2(N−2)
N l

The second expression simplifies to l
′

= 2
N k+ (N−2)

N l with some simple algebraic
manipulation. [Grover96]
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4.7.2 Corollary 1.1

Corollary 1.1: We seek to show that after applying A, both k
′

and l
′

are positive,
under the following conditions:

Let the state vector for:

• one state have amplitude k

• each of the remaining (N − 1) states the amplitude is l

And let:

• k and l be real

• k be negative, and l be positive

•
∣

∣

k
l

∣

∣ <
√
N

• N ≥ 9

Then, after applying A, both k
′

and l
′

are positive.
Proof:
First we will show that k

′

is positive:

• From theorem 1 we know k
′

=
(

2
N − 1

)

k + 2 (N−1)
N l.

• By assumption k is negative. Since N > 2 by assumption,
(

2
N − 1

)

is
negative.

• By assumption l is positive. Since N > 2 by assumption, 2 (N−1)
N is posi-

tive.

• Thus the expression for k
′

is of the form negative ∗ negative+ positive ∗
positive, which must be positive.

Next we will show that l
′

is positive:

• From theorem 1 we know l
′

= 2
N k + (N−2)

N l.

• By assumption
∣

∣

k
l

∣

∣ <
√
N

• For N ≥ 9, (N−2)
2 >

√
N . Therefore when N ≥ 9: (N−2)

2 >
√
N >

∣

∣

k
l

∣

∣,
and:

l
′

=
2

N
k +

(N − 2)

N
l >

2

N
k +

∣

∣

∣

∣

k

l

∣

∣

∣

∣

l

• Because k is negative and l is positive by assumption,
∣

∣

k
l

∣

∣ = −k
l .

• Therefore:

l
′

=
2

N
k +

(N − 2)

N
l >

2

N
k +

−k

l
l = (

2

N
− 1)k
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• It follows that l
′

is positive because k is positive and 2
N − 1 > 0 for N ≥ 3

(and by assumption N ≥ 9).

[Grover96]

4.7.3 Corollary 1.2

Corollary 1.2: Let the state vector be as follows:

• For the marked state Sm such that C(Sm) = 1, the amplitude is k

• For all other (N − 1) states the amplitude is l

Then after the application of A:

k2 + (N − 1)l2 = k
′2 + (N − 1)l

′2

Proof: This follows directly from the fact that A is unitary, and that uni-
tary transformations preserve normalization of the state vector. That means
precisely that the sum of the absolute squares of the components is the same
before and after the operation. Since we never deal with any complex am-
plitudes in the processing of Grover’s algorithm, corollary 1.2 follows directly.
[Grover96]

4.7.4 Theorem 2

Theorem 2: Let the state vector before step 2a of Grover’s algorithm be as
follows:

• For the unique marked state Sm which satisfies C(Sm) = 1 the amplitude
is k such that 0 < k < 1/

√
2

• For each of the remaining (N −1) states the amplitude is l such that l > 0

In this case we seek to prove both:

• The change in k, ∆k after steps 2a and 2b in Grover’s algorithm is bounded
below by ∆k > 1

2
√
N

• After steps 2a and 2b in Grover’s algorithm l > 0

Proof: Let the initial amplitudes be k and l, let the amplitudes after the se-
lected phase inversion step 2a be k

′

and l
′

, let the amplitudes after the inversion
about average step 2b be k

′′

and l
′′

.

By theorem 1 we know k
′′

=
(

1− 2
N

)

k + 2 (N−1)
N l (note the reversal of

terms in the coefficient of k, this is due to the phase inversion of k in step 2a),
therefore ∆k = k

′′ − k = − 2k
N + 2

(

1− 1
N

)

l. By the assumption 0 < k < 1/
√
2

and Corollary 1.2 it follows that |l| > 1√
2N

. By assumption l is positive, thus

l > 1√
2N

. Combining this with ∆k = k
′′ − k = − 2k

N + 2
(

1− 1
N

)

l. it follows

that ∆k > 1
2
√
N
. [Grover96]
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To show l
′′

positive consider after step 2a of the algorithm, after the selective
phase inversion, but before the inversion about average. At this point k

′

< 0

and l
′

> 0, since
(

0 < k < 1
2
√
N

)

and |l| > 1√
2N

(from previous paragraph) that
∣

∣

∣

k
′

l′

∣

∣

∣ <
√
N . This means that after step 2a our register is in a state covered by

Corollary 1.1, which states after the inversion about average operation l
′′

will
be positive.

4.8 A Special Case

It is instructive to consider the special case of N = 4. In this special case,
the precise number of iterations needed to attain the correct measurement with
unit certainty is one. Thus it can provide some intuition as to the manner in
which Grover’s algorithm exploits interference between the states to raise the
probability of the the desired state. [Grover00]

In the case of N = 4 then, the entire Grover’s algorithm is simply:

1. Qureg = (1, 0, 0, 0)T (Quantum register in state 00 with probability 1)

2. Apply Walsh-Hadamard transformation to Qureg

3. if (C(Qureg) == 1) Apply Phase Inversion

4. Apply A transformation to Qureg (A is inversion about average)

5. Measure state of Qureg

Let us trace the evolution of our quantum register through the algorithm.
Let us assume the state we are searching for is the state three. We will
denote the state of our quantum register like this: (a, b, c, d)T , where the
probability of measuring the register to be in the state 00 is a2, the prob-
ability of measuring state 01 is b2, the probability of measuring state 10 is
c2, and the probability of measuring state 11 is d2. In general, the ampli-
tudes could be complex, but no complex amplitudes are used in Grover’s
algorithm, so a2 = |a|2.
For a 4 state system, the Walsh-Hadamard transformation is represented
by the matrix:

W =
1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









The inversion about average transformation is represented by the matrix:

A =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1
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After step 1 of our algorithm the quantum register is in the state (1, 0, 0, 0)T .
After step 2 of our algorithm the quantum register is in the stateW∗(1, 0, 0, 0)T =
(.5, .5, .5, .5)T

After step 3 of our algorithm the quantum register is in the state (.5, .5,−.5, .5)T .
Remember, the marked element in this example is the third one.
After step 4 of our algorithm the quantum register is in the stateA∗(.5, .5,−.5, .5)T =
(0, 0, 1, 0)T .
Now comes step 5, the measurement step, we can see that with unit probability
we will measure the state 3, which was the marked state.

Now, this is an exceptional case, in general we will not attain unit probability
after any number of iterations. By theorem 2 we can see that there is some
number of iterations m that is O(

√
N) such that the probability of measuring

the marked state is at least 1/2. Note that the result for monotonic increasing
probability of the marked state proved in theorem 2 only applies so long as the
amplitude of the marked state is less than 1√

2
. Once the amplitude is greater

than that further applications of A cause it to shrink, it will then oscillate back
and fourth as more applications of the inner loop are executed. [BBHT96]

5 Open Questions

There are several open questions in Grover’s paper. Foremost among these is
how many times exactly should we iterate step 2 of Grover’s algorithm. Grover
proves the existence of some m ∈ O(

√
N), such that after m iterations of step

2 of the algorithm the probability of finding the register in the marked state is
greater than 1/2. Since the amplitude of the desired state, and hence the of
probability of measuring the desired state, is not monotonic increasing after m
iterations, it is not enough to know know the existence of m, it’s value must be
determined.

5.1 How Many Iterations are Required

Our initial state Ψ0 = (1/
√
N, 1/

√
N, . . . , 1/

√
N), is attained by performing

the Walsh-Hadamard transformation on the register in the zero state.
Let (k, l) denote denote the state of our vector, where k is the amplitude of

the marked state, and l is the amplitude of each of the remaining (N−1) states.
It is the case in Grover’s algorithm that the unmarked states always have the
same amplitude, so we can use this shorthand.

After the first application of the Walsh-Hadamard operator to place us in
an equal superposition of states let us say we are in state Ψ0 = (k0, l0).

From theorem 1 we see the j’th iteration will produce the state Ψj = (kj , lj),

where k0 = l0 = 1/
√
N , further:

kj+1 =
N − 2

N
kj +

2(N − 1)

N
lj

15



lj+1 =
N − 2

N
lj −

2

N
kj

With a little work on the recurrence relation we an solve for closed form
solutions of k and j. Let the angle θ be defined so that sin2 θ = 1/N . It can be
shown through mathematical induction that:

kj+1 = sin ((2j + 1)θ)

lj+1 =
1√

N − 1
cos((2j + 1)θ)

[BBHT96]
We are interested in the number of iterations for k to have near unit prob-

ability. Evidently, we will find the register to be in the target state with unit
probability when (2m + 1)θ = π/2, or when m = (π − 2θ)/4θ. We can only
perform an integer number of iterations, but the probability of failure is less
than 1/N if we iterate ⌊π/4θ⌋ times, which is very close to π

4

√
N when N is

large (1/
√
N = sin θ ≈ θ). [BBHT96] For the 50 percent probability called for

by Grover’s algorithm we need only π
8

√
N iterations. [BBHT96]

5.2 Searching for More Than One Item

Grover briefly mentions that his algorithm can work in a setting where there
is more than one state such that C(Si) = 1. In fact this poses no difficulty
whatsoever, and regardless of the number of marked states we retain our superior
performance over classical algorithms.. If there are t marked states, we can find
one of the marked states in O(

√

N/t) time. This presumes that we know the
number of marked elements in advance. [BBHT96]

Another interesting special case comes when t = N/4, in this case just as
in the special case where N = 4, we will find a solution with unit probability
after only one iteration, which is twice as fast as the expected running time
for a classical algorithm, and exponentially faster than the worst case classical
running time. [BBHT96]

5.3 Optimality of Grover’s Algorithm

It is not directly proved, but simply stated in Grover’s 1996 paper that his result
was optimal.

It was established in [BBBV96] that any quantum algorithm can not identify
a single marked element in fewer than Ω(

√
N). Grover’s algorithm takes O(

√
n)

iterations, and is thus asymptotically optimal.
It has been shown since that any quantum algorithm would require at least

π/4
√
N queries, which is precisely the number queries required by Grover’s

algorithm. [Grover99]
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5.4 Implications on P = NP

A common fallacious argument made is that since any quantum algorithm takes
Ω(

√
N) operations to identify a single marked element in a database of N ele-

ments, a quantum computer can not be used to attain exponential speed up in
a search problem.

This argument is incorrect because this lower bound applies only to queries
of the type used in Grover’s algorithm, whose queries ask only about a single
database element at a time. [Grover97]

Various novel approaches can be used to get around the Ω(
√
N) queries

barrier which still leave hope for a finding some exponential speed up of an NP-
Hard problem. These approaches generally try to capitalize on some structure
of the problem at hand, which Grover’s algorithm does not do at all.

Grover provides an algorithm which will locate a single marked element in a
N element database in exactly 1 query. It does however require O(N logN) pre
and post processing time. While much slower in overall running time for the
best classical and quantum algorithms for the same task, it does demonstrate
that the Ω(

√
N) query limit is not necessarily rule out exponential speed up of

quantum computers in a search problem. [Grover97]
It has also been shown that nonlinear quantum mechanics imply polynomial

time solutions for NP-complete problems, however the same paper notes that:
“Such nonlinearity is purely hypothetical: all known experiments confirm the
linearity of quantum mechanics to a high degree of accuracy” [Abrams98]

6 Conclusion

Quantum computation allows for exponential speed up and storage in a quantum
register via quantum parallelism. The more basis states represented within the
register, and hence the more speed up due to parallelism in the register, the
more improbable it is that a desired state can be measured. Grover’s algorithm
handles this problem by relying on transformations which cause the amplitude
of the marked state to increase at the expense of the non marked states, in a
manner ways this is analogous to interference of waves.

Grover’s algorithm is unique among quantum algorithms in that it shows a
useful calculation that a quantum computer can calculate in fewer operations
than any classical computer possibly can. At the heart of Grover’s algorithm are
two unitary transformations, the first is a selective phase inversion, which makes
the sign of the amplitude of the target negative. The second unitary transfor-
mation is an inversion about average operation. Initially we place the amplitude
of all states at the same positive value, each phase switch and inversion about
average increases the amplitude of the target state. The exact number of times
we perform these transformations is roughly π/4

√
N for sufficiently large N .

For a classical algorithm the best time bound is O(n).
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